0 Prolog
↳1 CutEliminatorProof (⇒, 0 ms)
↳2 Prolog
↳3 PrologToPiTRSProof (⇒, 64 ms)
↳4 PiTRS
↳5 DependencyPairsProof (⇔, 76 ms)
↳6 PiDP
↳7 DependencyGraphProof (⇔, 0 ms)
↳8 AND
↳9 PiDP
↳10 UsableRulesProof (⇔, 0 ms)
↳11 PiDP
↳12 PiDPToQDPProof (⇒, 23 ms)
↳13 QDP
↳14 QDPSizeChangeProof (⇔, 0 ms)
↳15 YES
↳16 PiDP
↳17 PiDPToQDPProof (⇒, 0 ms)
↳18 QDP
↳19 MRRProof (⇔, 204 ms)
↳20 QDP
↳21 PisEmptyProof (⇔, 0 ms)
↳22 YES
in_order_in_ag(void, L) → U1_ag(L, eq_in_gg(L, []))
eq_in_gg(X, X) → eq_out_gg(X, X)
U1_ag(L, eq_out_gg(L, [])) → in_order_out_ag(void, L)
in_order_in_ag(T, Xs) → U2_ag(T, Xs, value_in_aa(T, X))
value_in_aa(void, X5) → value_out_aa(void, X5)
value_in_aa(node(X6, X, X7), X) → value_out_aa(node(X6, X, X7), X)
U2_ag(T, Xs, value_out_aa(T, X)) → U3_ag(T, Xs, X, app_in_aag(Ls, .(X, Rs), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U8_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U8_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_ag(T, Xs, X, app_out_aag(Ls, .(X, Rs), Xs)) → U4_ag(T, Xs, X, Ls, Rs, left_in_aa(T, L))
left_in_aa(void, void) → left_out_aa(void, void)
left_in_aa(node(L, X1, X2), L) → left_out_aa(node(L, X1, X2), L)
U4_ag(T, Xs, X, Ls, Rs, left_out_aa(T, L)) → U5_ag(T, Xs, X, Ls, Rs, L, in_order_in_ag(L, Ls))
U5_ag(T, Xs, X, Ls, Rs, L, in_order_out_ag(L, Ls)) → U6_ag(T, Xs, X, Ls, Rs, L, right_in_aa(T, R))
right_in_aa(void, void) → right_out_aa(void, void)
right_in_aa(node(X3, X4, R), R) → right_out_aa(node(X3, X4, R), R)
U6_ag(T, Xs, X, Ls, Rs, L, right_out_aa(T, R)) → U7_ag(T, Xs, in_order_in_ag(R, Rs))
U7_ag(T, Xs, in_order_out_ag(R, Rs)) → in_order_out_ag(T, Xs)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
in_order_in_ag(void, L) → U1_ag(L, eq_in_gg(L, []))
eq_in_gg(X, X) → eq_out_gg(X, X)
U1_ag(L, eq_out_gg(L, [])) → in_order_out_ag(void, L)
in_order_in_ag(T, Xs) → U2_ag(T, Xs, value_in_aa(T, X))
value_in_aa(void, X5) → value_out_aa(void, X5)
value_in_aa(node(X6, X, X7), X) → value_out_aa(node(X6, X, X7), X)
U2_ag(T, Xs, value_out_aa(T, X)) → U3_ag(T, Xs, X, app_in_aag(Ls, .(X, Rs), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U8_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U8_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_ag(T, Xs, X, app_out_aag(Ls, .(X, Rs), Xs)) → U4_ag(T, Xs, X, Ls, Rs, left_in_aa(T, L))
left_in_aa(void, void) → left_out_aa(void, void)
left_in_aa(node(L, X1, X2), L) → left_out_aa(node(L, X1, X2), L)
U4_ag(T, Xs, X, Ls, Rs, left_out_aa(T, L)) → U5_ag(T, Xs, X, Ls, Rs, L, in_order_in_ag(L, Ls))
U5_ag(T, Xs, X, Ls, Rs, L, in_order_out_ag(L, Ls)) → U6_ag(T, Xs, X, Ls, Rs, L, right_in_aa(T, R))
right_in_aa(void, void) → right_out_aa(void, void)
right_in_aa(node(X3, X4, R), R) → right_out_aa(node(X3, X4, R), R)
U6_ag(T, Xs, X, Ls, Rs, L, right_out_aa(T, R)) → U7_ag(T, Xs, in_order_in_ag(R, Rs))
U7_ag(T, Xs, in_order_out_ag(R, Rs)) → in_order_out_ag(T, Xs)
IN_ORDER_IN_AG(void, L) → U1_AG(L, eq_in_gg(L, []))
IN_ORDER_IN_AG(void, L) → EQ_IN_GG(L, [])
IN_ORDER_IN_AG(T, Xs) → U2_AG(T, Xs, value_in_aa(T, X))
IN_ORDER_IN_AG(T, Xs) → VALUE_IN_AA(T, X)
U2_AG(T, Xs, value_out_aa(T, X)) → U3_AG(T, Xs, X, app_in_aag(Ls, .(X, Rs), Xs))
U2_AG(T, Xs, value_out_aa(T, X)) → APP_IN_AAG(Ls, .(X, Rs), Xs)
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → U8_AAG(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAG(Xs, Ys, Zs)
U3_AG(T, Xs, X, app_out_aag(Ls, .(X, Rs), Xs)) → U4_AG(T, Xs, X, Ls, Rs, left_in_aa(T, L))
U3_AG(T, Xs, X, app_out_aag(Ls, .(X, Rs), Xs)) → LEFT_IN_AA(T, L)
U4_AG(T, Xs, X, Ls, Rs, left_out_aa(T, L)) → U5_AG(T, Xs, X, Ls, Rs, L, in_order_in_ag(L, Ls))
U4_AG(T, Xs, X, Ls, Rs, left_out_aa(T, L)) → IN_ORDER_IN_AG(L, Ls)
U5_AG(T, Xs, X, Ls, Rs, L, in_order_out_ag(L, Ls)) → U6_AG(T, Xs, X, Ls, Rs, L, right_in_aa(T, R))
U5_AG(T, Xs, X, Ls, Rs, L, in_order_out_ag(L, Ls)) → RIGHT_IN_AA(T, R)
U6_AG(T, Xs, X, Ls, Rs, L, right_out_aa(T, R)) → U7_AG(T, Xs, in_order_in_ag(R, Rs))
U6_AG(T, Xs, X, Ls, Rs, L, right_out_aa(T, R)) → IN_ORDER_IN_AG(R, Rs)
in_order_in_ag(void, L) → U1_ag(L, eq_in_gg(L, []))
eq_in_gg(X, X) → eq_out_gg(X, X)
U1_ag(L, eq_out_gg(L, [])) → in_order_out_ag(void, L)
in_order_in_ag(T, Xs) → U2_ag(T, Xs, value_in_aa(T, X))
value_in_aa(void, X5) → value_out_aa(void, X5)
value_in_aa(node(X6, X, X7), X) → value_out_aa(node(X6, X, X7), X)
U2_ag(T, Xs, value_out_aa(T, X)) → U3_ag(T, Xs, X, app_in_aag(Ls, .(X, Rs), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U8_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U8_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_ag(T, Xs, X, app_out_aag(Ls, .(X, Rs), Xs)) → U4_ag(T, Xs, X, Ls, Rs, left_in_aa(T, L))
left_in_aa(void, void) → left_out_aa(void, void)
left_in_aa(node(L, X1, X2), L) → left_out_aa(node(L, X1, X2), L)
U4_ag(T, Xs, X, Ls, Rs, left_out_aa(T, L)) → U5_ag(T, Xs, X, Ls, Rs, L, in_order_in_ag(L, Ls))
U5_ag(T, Xs, X, Ls, Rs, L, in_order_out_ag(L, Ls)) → U6_ag(T, Xs, X, Ls, Rs, L, right_in_aa(T, R))
right_in_aa(void, void) → right_out_aa(void, void)
right_in_aa(node(X3, X4, R), R) → right_out_aa(node(X3, X4, R), R)
U6_ag(T, Xs, X, Ls, Rs, L, right_out_aa(T, R)) → U7_ag(T, Xs, in_order_in_ag(R, Rs))
U7_ag(T, Xs, in_order_out_ag(R, Rs)) → in_order_out_ag(T, Xs)
IN_ORDER_IN_AG(void, L) → U1_AG(L, eq_in_gg(L, []))
IN_ORDER_IN_AG(void, L) → EQ_IN_GG(L, [])
IN_ORDER_IN_AG(T, Xs) → U2_AG(T, Xs, value_in_aa(T, X))
IN_ORDER_IN_AG(T, Xs) → VALUE_IN_AA(T, X)
U2_AG(T, Xs, value_out_aa(T, X)) → U3_AG(T, Xs, X, app_in_aag(Ls, .(X, Rs), Xs))
U2_AG(T, Xs, value_out_aa(T, X)) → APP_IN_AAG(Ls, .(X, Rs), Xs)
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → U8_AAG(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAG(Xs, Ys, Zs)
U3_AG(T, Xs, X, app_out_aag(Ls, .(X, Rs), Xs)) → U4_AG(T, Xs, X, Ls, Rs, left_in_aa(T, L))
U3_AG(T, Xs, X, app_out_aag(Ls, .(X, Rs), Xs)) → LEFT_IN_AA(T, L)
U4_AG(T, Xs, X, Ls, Rs, left_out_aa(T, L)) → U5_AG(T, Xs, X, Ls, Rs, L, in_order_in_ag(L, Ls))
U4_AG(T, Xs, X, Ls, Rs, left_out_aa(T, L)) → IN_ORDER_IN_AG(L, Ls)
U5_AG(T, Xs, X, Ls, Rs, L, in_order_out_ag(L, Ls)) → U6_AG(T, Xs, X, Ls, Rs, L, right_in_aa(T, R))
U5_AG(T, Xs, X, Ls, Rs, L, in_order_out_ag(L, Ls)) → RIGHT_IN_AA(T, R)
U6_AG(T, Xs, X, Ls, Rs, L, right_out_aa(T, R)) → U7_AG(T, Xs, in_order_in_ag(R, Rs))
U6_AG(T, Xs, X, Ls, Rs, L, right_out_aa(T, R)) → IN_ORDER_IN_AG(R, Rs)
in_order_in_ag(void, L) → U1_ag(L, eq_in_gg(L, []))
eq_in_gg(X, X) → eq_out_gg(X, X)
U1_ag(L, eq_out_gg(L, [])) → in_order_out_ag(void, L)
in_order_in_ag(T, Xs) → U2_ag(T, Xs, value_in_aa(T, X))
value_in_aa(void, X5) → value_out_aa(void, X5)
value_in_aa(node(X6, X, X7), X) → value_out_aa(node(X6, X, X7), X)
U2_ag(T, Xs, value_out_aa(T, X)) → U3_ag(T, Xs, X, app_in_aag(Ls, .(X, Rs), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U8_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U8_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_ag(T, Xs, X, app_out_aag(Ls, .(X, Rs), Xs)) → U4_ag(T, Xs, X, Ls, Rs, left_in_aa(T, L))
left_in_aa(void, void) → left_out_aa(void, void)
left_in_aa(node(L, X1, X2), L) → left_out_aa(node(L, X1, X2), L)
U4_ag(T, Xs, X, Ls, Rs, left_out_aa(T, L)) → U5_ag(T, Xs, X, Ls, Rs, L, in_order_in_ag(L, Ls))
U5_ag(T, Xs, X, Ls, Rs, L, in_order_out_ag(L, Ls)) → U6_ag(T, Xs, X, Ls, Rs, L, right_in_aa(T, R))
right_in_aa(void, void) → right_out_aa(void, void)
right_in_aa(node(X3, X4, R), R) → right_out_aa(node(X3, X4, R), R)
U6_ag(T, Xs, X, Ls, Rs, L, right_out_aa(T, R)) → U7_ag(T, Xs, in_order_in_ag(R, Rs))
U7_ag(T, Xs, in_order_out_ag(R, Rs)) → in_order_out_ag(T, Xs)
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAG(Xs, Ys, Zs)
in_order_in_ag(void, L) → U1_ag(L, eq_in_gg(L, []))
eq_in_gg(X, X) → eq_out_gg(X, X)
U1_ag(L, eq_out_gg(L, [])) → in_order_out_ag(void, L)
in_order_in_ag(T, Xs) → U2_ag(T, Xs, value_in_aa(T, X))
value_in_aa(void, X5) → value_out_aa(void, X5)
value_in_aa(node(X6, X, X7), X) → value_out_aa(node(X6, X, X7), X)
U2_ag(T, Xs, value_out_aa(T, X)) → U3_ag(T, Xs, X, app_in_aag(Ls, .(X, Rs), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U8_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U8_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_ag(T, Xs, X, app_out_aag(Ls, .(X, Rs), Xs)) → U4_ag(T, Xs, X, Ls, Rs, left_in_aa(T, L))
left_in_aa(void, void) → left_out_aa(void, void)
left_in_aa(node(L, X1, X2), L) → left_out_aa(node(L, X1, X2), L)
U4_ag(T, Xs, X, Ls, Rs, left_out_aa(T, L)) → U5_ag(T, Xs, X, Ls, Rs, L, in_order_in_ag(L, Ls))
U5_ag(T, Xs, X, Ls, Rs, L, in_order_out_ag(L, Ls)) → U6_ag(T, Xs, X, Ls, Rs, L, right_in_aa(T, R))
right_in_aa(void, void) → right_out_aa(void, void)
right_in_aa(node(X3, X4, R), R) → right_out_aa(node(X3, X4, R), R)
U6_ag(T, Xs, X, Ls, Rs, L, right_out_aa(T, R)) → U7_ag(T, Xs, in_order_in_ag(R, Rs))
U7_ag(T, Xs, in_order_out_ag(R, Rs)) → in_order_out_ag(T, Xs)
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAG(Xs, Ys, Zs)
APP_IN_AAG(.(Zs)) → APP_IN_AAG(Zs)
From the DPs we obtained the following set of size-change graphs:
IN_ORDER_IN_AG(T, Xs) → U2_AG(T, Xs, value_in_aa(T, X))
U2_AG(T, Xs, value_out_aa(T, X)) → U3_AG(T, Xs, X, app_in_aag(Ls, .(X, Rs), Xs))
U3_AG(T, Xs, X, app_out_aag(Ls, .(X, Rs), Xs)) → U4_AG(T, Xs, X, Ls, Rs, left_in_aa(T, L))
U4_AG(T, Xs, X, Ls, Rs, left_out_aa(T, L)) → U5_AG(T, Xs, X, Ls, Rs, L, in_order_in_ag(L, Ls))
U5_AG(T, Xs, X, Ls, Rs, L, in_order_out_ag(L, Ls)) → U6_AG(T, Xs, X, Ls, Rs, L, right_in_aa(T, R))
U6_AG(T, Xs, X, Ls, Rs, L, right_out_aa(T, R)) → IN_ORDER_IN_AG(R, Rs)
U4_AG(T, Xs, X, Ls, Rs, left_out_aa(T, L)) → IN_ORDER_IN_AG(L, Ls)
in_order_in_ag(void, L) → U1_ag(L, eq_in_gg(L, []))
eq_in_gg(X, X) → eq_out_gg(X, X)
U1_ag(L, eq_out_gg(L, [])) → in_order_out_ag(void, L)
in_order_in_ag(T, Xs) → U2_ag(T, Xs, value_in_aa(T, X))
value_in_aa(void, X5) → value_out_aa(void, X5)
value_in_aa(node(X6, X, X7), X) → value_out_aa(node(X6, X, X7), X)
U2_ag(T, Xs, value_out_aa(T, X)) → U3_ag(T, Xs, X, app_in_aag(Ls, .(X, Rs), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U8_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U8_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_ag(T, Xs, X, app_out_aag(Ls, .(X, Rs), Xs)) → U4_ag(T, Xs, X, Ls, Rs, left_in_aa(T, L))
left_in_aa(void, void) → left_out_aa(void, void)
left_in_aa(node(L, X1, X2), L) → left_out_aa(node(L, X1, X2), L)
U4_ag(T, Xs, X, Ls, Rs, left_out_aa(T, L)) → U5_ag(T, Xs, X, Ls, Rs, L, in_order_in_ag(L, Ls))
U5_ag(T, Xs, X, Ls, Rs, L, in_order_out_ag(L, Ls)) → U6_ag(T, Xs, X, Ls, Rs, L, right_in_aa(T, R))
right_in_aa(void, void) → right_out_aa(void, void)
right_in_aa(node(X3, X4, R), R) → right_out_aa(node(X3, X4, R), R)
U6_ag(T, Xs, X, Ls, Rs, L, right_out_aa(T, R)) → U7_ag(T, Xs, in_order_in_ag(R, Rs))
U7_ag(T, Xs, in_order_out_ag(R, Rs)) → in_order_out_ag(T, Xs)
IN_ORDER_IN_AG(Xs) → U2_AG(Xs, value_in_aa)
U2_AG(Xs, value_out_aa) → U3_AG(app_in_aag(Xs))
U3_AG(app_out_aag(Ls, .(Rs))) → U4_AG(Ls, Rs, left_in_aa)
U4_AG(Ls, Rs, left_out_aa) → U5_AG(Rs, in_order_in_ag(Ls))
U5_AG(Rs, in_order_out_ag) → U6_AG(Rs, right_in_aa)
U6_AG(Rs, right_out_aa) → IN_ORDER_IN_AG(Rs)
U4_AG(Ls, Rs, left_out_aa) → IN_ORDER_IN_AG(Ls)
in_order_in_ag(L) → U1_ag(eq_in_gg(L, []))
eq_in_gg(X, X) → eq_out_gg
U1_ag(eq_out_gg) → in_order_out_ag
in_order_in_ag(Xs) → U2_ag(Xs, value_in_aa)
value_in_aa → value_out_aa
U2_ag(Xs, value_out_aa) → U3_ag(app_in_aag(Xs))
app_in_aag(X) → app_out_aag([], X)
app_in_aag(.(Zs)) → U8_aag(app_in_aag(Zs))
U8_aag(app_out_aag(Xs, Ys)) → app_out_aag(.(Xs), Ys)
U3_ag(app_out_aag(Ls, .(Rs))) → U4_ag(Ls, Rs, left_in_aa)
left_in_aa → left_out_aa
U4_ag(Ls, Rs, left_out_aa) → U5_ag(Rs, in_order_in_ag(Ls))
U5_ag(Rs, in_order_out_ag) → U6_ag(Rs, right_in_aa)
right_in_aa → right_out_aa
U6_ag(Rs, right_out_aa) → U7_ag(in_order_in_ag(Rs))
U7_ag(in_order_out_ag) → in_order_out_ag
in_order_in_ag(x0)
eq_in_gg(x0, x1)
U1_ag(x0)
value_in_aa
U2_ag(x0, x1)
app_in_aag(x0)
U8_aag(x0)
U3_ag(x0)
left_in_aa
U4_ag(x0, x1, x2)
U5_ag(x0, x1)
right_in_aa
U6_ag(x0, x1)
U7_ag(x0)
IN_ORDER_IN_AG(Xs) → U2_AG(Xs, value_in_aa)
U2_AG(Xs, value_out_aa) → U3_AG(app_in_aag(Xs))
U3_AG(app_out_aag(Ls, .(Rs))) → U4_AG(Ls, Rs, left_in_aa)
U4_AG(Ls, Rs, left_out_aa) → U5_AG(Rs, in_order_in_ag(Ls))
U5_AG(Rs, in_order_out_ag) → U6_AG(Rs, right_in_aa)
U6_AG(Rs, right_out_aa) → IN_ORDER_IN_AG(Rs)
U4_AG(Ls, Rs, left_out_aa) → IN_ORDER_IN_AG(Ls)
in_order_in_ag(L) → U1_ag(eq_in_gg(L, []))
eq_in_gg(X, X) → eq_out_gg
U1_ag(eq_out_gg) → in_order_out_ag
in_order_in_ag(Xs) → U2_ag(Xs, value_in_aa)
value_in_aa → value_out_aa
U2_ag(Xs, value_out_aa) → U3_ag(app_in_aag(Xs))
app_in_aag(X) → app_out_aag([], X)
app_in_aag(.(Zs)) → U8_aag(app_in_aag(Zs))
U8_aag(app_out_aag(Xs, Ys)) → app_out_aag(.(Xs), Ys)
U3_ag(app_out_aag(Ls, .(Rs))) → U4_ag(Ls, Rs, left_in_aa)
left_in_aa → left_out_aa
U4_ag(Ls, Rs, left_out_aa) → U5_ag(Rs, in_order_in_ag(Ls))
U5_ag(Rs, in_order_out_ag) → U6_ag(Rs, right_in_aa)
right_in_aa → right_out_aa
U6_ag(Rs, right_out_aa) → U7_ag(in_order_in_ag(Rs))
U7_ag(in_order_out_ag) → in_order_out_ag
inorderinag1 > eqoutgg > U2ag2 > U3AG1 > U4AG3 > rightinaa > appinaag1 > U5AG2 > U6AG2 > INORDERINAG1 > U2AG2 > leftinaa > valueinaa > rightoutaa > U6ag2 > eqingg2 > leftoutaa > U3ag1 > U7ag1 > U8aag1 > U4ag3 > U5ag2 > U1ag1 > inorderoutag > appoutaag2 > valueoutaa > .1 > []
[]=7
eq_out_gg=11
in_order_out_ag=18
value_in_aa=7
value_out_aa=6
left_in_aa=18
left_out_aa=17
right_in_aa=19
right_out_aa=17
in_order_in_ag_1=15
U1_ag_1=7
U3_ag_1=1
app_in_aag_1=13
._1=12
U8_aag_1=12
U7_ag_1=1
IN_ORDER_IN_AG_1=17
U3_AG_1=1
eq_in_gg_2=0
U2_ag_2=8
app_out_aag_2=5
U4_ag_3=0
U5_ag_2=2
U6_ag_2=0
U2_AG_2=10
U4_AG_3=0
U5_AG_2=2
U6_AG_2=0
in_order_in_ag(x0)
eq_in_gg(x0, x1)
U1_ag(x0)
value_in_aa
U2_ag(x0, x1)
app_in_aag(x0)
U8_aag(x0)
U3_ag(x0)
left_in_aa
U4_ag(x0, x1, x2)
U5_ag(x0, x1)
right_in_aa
U6_ag(x0, x1)
U7_ag(x0)